Eletricista Instalador Predial

Projetos e Instalações

1ª Edição Bauru/SP Editora Viena 2014

Sumário

LISTA DE S	IGLAS E ABREVIATURAS	17
1.	Conceitos Fundamentais	19
1.1.	Matéria	21
1.2.	Circuito Elétrico	
1.2.1.	Dispositivo de Manobra	
1.3.	Grandezas Elétricas	
1.3.1.	Carga Elétrica	
1.3.2.	Corrente Elétrica (I)	
1.3.3.	Tensão Elétrica (E)	24
1.3.4.	Resistência Elétrica (R)	25
1.3.5.	Efeito Joule	
1.3.6.	Condutância Elétrica (G)	26
1.3.7.	Lei de Ohm	27
1.3.8.	Potência Elétrica (P)	28
1.4.	Associações	30
1.4.1.	Leis de Kirchhoff	
1.4.1.1.	Lei dos Nós ou Lei das Correntes	
1.4.1.2.	Lei da Malha ou Lei das Tensões	
1.4.2.	Associação de Resistores	
1.4.2.1.	Resistores em Série	32
1.4.2.2.	Resistores em Paralelo	
1.4.2.3.	Associação Mista	38
1.5.	Unidades de Medida	40
1.6.	Corrente Contínua e Corrente Alternada	
1.6.1.	Corrente ou Tensão Contínua	41
1.6.2.	Corrente ou Tensão Alternada	
1.6.2.1.	Corrente ou Tensão Eficaz	
1.6.2.2.	Defasagem	
1.6.2.3.	Sistemas Alternados Trifásicos	45
1.6.3.	Potência Elétrica em Circuitos de Corrente Alternada (P)	
1.6.3.1.	Potência Ativa	
1.6.3.2.	Potência Reativa	
1.6.4.	Fator de Potência	
2.	Energia Elétrica de Potência	
2.1.	Conceitos	
2.2.	Geração de Energia Elétrica	
2.3.	Transmissão de Energia Elétrica	55
2.4.	Distribuição de Energia Elétrica	56
2.5.	Padróes	
2.6.	Normas para Fornecimento de Energia	
3.	Dados para Projetos	
3.1.	Conceitos de Luminotécnica	
3.1.1.	Conceitos e Grandezas	
3.1.1.1.	Fluxo Luminoso (φ)	61
3.1.1.2.	Intensidade Luminosa (I)	61

12 • Eletricista Instalador Predial

3.1.1.3.	Iluminância ou Iluminamento (E)	
3.1.1.4.	Luminância (L)	62
3.1.2.	Tipos de Lâmpadas e Características	62
3.1.2.1.	Lâmpadas Incandescentes	62
3.1.2.2.	Lâmpadas Fluorescentes	63
3.1.2.3.	Lâmpadas Dicróicas	
3.1.2.4.	Lâmpadas de Descarga	64
3.1.2.5.	LED's	
3.1.2.6.	Outros Tipos de Lâmpadas	65
3.1.3.	Iluminâncias Recomendadas	65
3.1.4.	Interferências na Iluminação	
3.1.5.	Tabelas	
3.1.6.	Cálculos de Luminárias	
3.1.6.1.	Pelo Método do Índice Médio	
3.1.6.2.	Pelo Método do Fluxo Luminoso	
3.1.7.	Considerações	
3.2.	Previsões de Cargas	
3.2.1.	Previsão de Cargas em Habitação	
3.2.1.1.	Iluminação	82
3.2.1.2.	Tomadas	82
3.2.2.	Divisão da Instalação	
3.2.3.	Potências Típicas de Equipamentos	84
3.3.	Simbologia Gráfica	85
3.3.1.	Dutos e Distribuição	85 85
3.3.2.	Quadros Distribuição	
3.3.3.	Interruptores	87 87
3.3.4.	Luminárias, Refletores e Lâmpadas	80
3.3.5.	Tomadas	
3.4.	Elaboração de Projetos	
3.5.	Esquemas Unifilares e Multifilares	94
3.5.1.	Esquema Unifilar	94
3.5.2.	Esquema Multifilar	
3.6.	Potência Instalada	
3.7.	Potência de Alimentação	
3.7.1.	Demanda Provável	97 97
3.7.2.	Demanda Geral Provável	
3.7.2. 3.7.3.	Seletividade da Instalação	
3.7. <i>3</i> . 3.8.	Normas Técnicas	101 101
3.9.	Instalação	
3.9.1.	Tensão	
	Número de Fios	
3.9.2. 3.9.3.	Tipo da Entrada	102
3.9.5. 3.10.	Esquemas de Distribuição	10/
3.10. 3.10.1.	Esquema de Condutores Vivos	104 107
3.10.1.	Esquemas de Aterramento	104 107
3.10.2. 3.10.2.1.		
3.10.2.1. 3.10.2.2.	Esquema TT	
	Esquema TT	
3.10.2.3.	Esquema IT	
4.	FERRAMENTAS E COMPONENTES	111
4.1.	Ferramentas	113
4.1.1.	Alicates	

4.1.2.	Chaves de Fenda	
4.1.3.	Chaves Philips	115
4.1.4.	Chave Inglesa	115
4.1.5.	Canivete ou Estilete	115
4.1.6.	Trena	
4.1.7.	Martelo	116
4.1.8.	Chave de Teste	
4.1.9.	Prumo e Nível	
4.1.10.	Fita Passa-fio	
4.1.11.	Lanterna	
4.1.12.	Serra de Arco	
4.1.13.	Furadeira	
4.1.14.	Serra Copo	
4.1.15.	Fita Isolante	
4.1.16.	Multímetro	
4.1.17.	Alicate Amperímetro	
4.1.18.	Outras Ferramentas	
4.1.19.	Jogos de Ferramentas	
4.1.17.	Tomadas	
4.2.	Dispositivos de Comando de Sinalização e Iluminação	
4.3.1.		
	Lâmpadas e Interruptores	124
4.3.2.	Combinados ou Conjuntos	
4.3.3.	Dimmer	
4.3.4.	Pulsadores	
4.3.4.1.	Minuterias	
4.3.4.2.	Sensores de Presença ou Movimento	12/
4.3.4.3.	Multifunções	127
4.4.	Relés de Impulso e Fotoelétrico	
4.4.1.	Relé de Impulso	128
4.4.2.	Relé Fotoelétrico	
4.4.3.	Outros Acionadores	
4.5.	Associações e Ligações	130
4.5.1.	Ligações	131
4.5.1.1.	Ligação Estrela	131
4.5.1.2.	O Sistema Triângulo ou Delta	133
4.6.	Materiais Isolantes	133
4.7.	Medidas de Segurança	134
5.	Condutores	
_		
5.1.	Tipos de Condutores	141
5.1.1.	Isolamento	
5.1.2.	Identificação e Cores	
5.2.	Dimensionamento dos Condutores	
5.2.1.	Seções Mínimas	
5.2.2.	Métodos de Referência e Instalação	
5.2.3.	Tipos de Linhas Elétricas	144
5.2.4.	Temperaturas Características dos Condutores	146
5.2.5.	Capacidade de Condução de Corrente	146
5.2.6.	Fatores de Temperatura Ambiente	
5.2.7.	Fatores de Agrupamento	
5.2.8.	Carregamento	
5.2.9.	Critérios e Cálculos	

14 • Eletricista Instalador Predial

5.2.9.1.	Cálculos de Queda de Iensão	15/
5.3.	Conexões	160
5.3.1.	Conectores	160
5.3.1.1.	Conectores para Condutores Isolados	160
5.3.1.2.	Conectores para Condutores sem Isolamento	
5.3.2.	Emendas	161
5.3.2.1.	Emendas de Prolongamento	162
5.3.2.2.	Emendas de Ligação	
5.3.2.3.	Emendas de Derivação	164
5.3.2.4.	Emendas de Condutores Grossos	165
5.4.	Soldagem	
5.5.	Terminais	160
6.	Eletrodutos	171
6.1.	Eletrodutos e Instalação	173
6.1.1.	Eletrodutos Metálicos	174
6.1.2.	Eletrodutos de Materiais Isolantes	
6.1.3.	Eletrodutos Flexíveis	
6.1.4.	Instalação dos Eletrodutos	
6.1.4.1.	Taxa de Ocupação dos Eletrodutos	
6.1.4.2.		
	Outros Fatores Normativos em Relação aos Eletrodutos	101
6.2.	Leito, Bandeja e Eletrocalha	
6.2.1.	Leito	
6.2.2.	Bandeja	182
6.2.3.	Eletrocalha	
6.2.4.	Instalações	
6.3.	Canaletas e Perfilados	183
7.	Quadros e Caixas	187
7.1.	Quadro de Medição	189
7.2.	Caixa Seccionadoras	
7.3.	Caixas ou Quadros de Distribuição	
7.3. 7.4.	Caixas de Passagem	102
7.4. 7.5.		
	Caixas de Luz	
7.5.	Outras Caixas	
7.5.1.	Caixa para o DPS	
7.5.2.	Caixa para o BEP	
8.	Proteções	199
8.1.	Patologias nas Instalações Elétricas Prediais	201
8.2.	Proteções em Instalações Elétricas Prediais	
8.2.1.	Fusíveis	
8.2.1.1.	Tipo Cartucho	202
		20%
8.2.1.2.	Tipo Cilíndrico	
8.2.1.3.	Tipo Rolha	
8.2.2.	Disjuntores	
8.2.2.1.	Disjuntores de Alta e Média Tensão	
8.2.2.2.	Disjuntores de Baixa Tensão	
8.2.2.3.	Diferença entre Disjuntores NEMA e IEC	
8.3.	Aterramento	
8.4.	Condutores de Proteção	
8.4.1.	Condutor de Proteção (PE)	213

8.4.2.	Condutor de Proteção e Neutro Combinados (PEN)	
8.5.	Dispositivo de Proteção Contra Surto (DPS)	216
8.6.	Choque Elétrico.	219
8.6.1.	Dispositivo Diferencial Residual (DR)	221
8.6.1.1.	Tipos de Dispositivo DR	222
8.7.	Descargas Atmosféricas	
8.7.1.	Descargas Nuvem-Solo	
8.7.2.	Raios de Polaridade Negativa	223
8.7.3.	Líder Escalonado	
8.7.4.	Descarga de Retorno	
8.7.5.	Líder Čontínuo	
8.7.6.	Raios Múltiplos	226
8.7.7.	Raios de Polaridade Positiva	
8.8.	Sistema de Proteção Contra Descargas Atmosféricas (SPDA)	226
8.8.1.	Sistema Externo de Proteção Contra Descargas Atmosféricas	228
8.8.1.1.	Captores	228
8.8.2.	Condutores de Descida	
8.8.2.1.	Descidas para SPDA isolados	
8.8.2.2.	Descidas para SPDA não Isolados	
8.8.2.3.	Construção das Descidas não Naturais	
8.8.2.4.	Construção das Descidas Naturais	233
8.8.2.5.	Conexão de Medição	
8.8.3.	Aterramento	
8.8.3.1.	Eletrodos de Aterramento	
8.8.3.2.	Aterramento para Condições Normais	
8.8.3.3.	Elétrodos não Naturais	
8.8.4.	Fixações e Conexões do SPDA	
8.8.4.2.	Conexões	
8.9.	Equipotencialização	237
9.	Ensaios, Inspeções e Manutenções	241
9.1.	Norma NBR 5410	243
9.2.	Materiais	243
9.3.	Análise de Projetos	
9.4.	Ensaio e Manutenção	
9.4.1.	Inspeção Visual	
9.4.2.	Ensaios	
9.4.3.	Manutenção	
Referênc	CIA	

Lista de Siglas e Abreviaturas

Ω	ohm.	
ABNT	Associação Brasileira de Normas Técnica.	
ANEEL	Agencia Nacional de Energia Elétrica.	
BEP	Barramento de Equipotencialização.	
cm	Centímetro.	
$DP\overline{S}$	Dispositivo de Proteção Contra Surto.	
DR	Dispositivo Diferencial Residual.	
ETI	Equipamentos de Tecnologia da Informação.	
IEC	International Electrotechnical Commission.	
kA	Quiloampere.	
Km	Quilometro.	
Km/h	Quilometro por hora.	
mA	miliAmpère.	
mm	Milimetro.	
ms	Milissegundos.	
MTE	Ministério do Trabalho e Emprego.	
NBR	Norma Brasileira.	
NEMA	National Electrical Manufacturers Association.	
NPF	Não perfura.	
NPQ	Não gera ponto quente.	
NR	Norma regulamentadora do MTE.	
ONS	Operador Nacional do Sistema Elétrico.	
PE	Condutor de Proteção.	
PEN	Condutor de Proteção Neutro.	
PPF	Pode perfurar.	
$SPD\overline{A}$	Sistema de Proteção Contra Descargas Atmosféricas.	
SI	Sistema Internacional de Unidades.	
V	Volt.	

Conceitos Fundamentais

Matéria

CIRCUITO ELÉTRICO

Grandezas Elétricas

Associações

Unidades de Medida

CORRENTE CONTÍNUA E CORRENTE ALTERNADA

Conceitos Fundamentais

1.1. Matéria

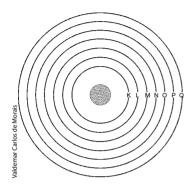
No universo, toda a matéria existente é constituída de partículas minúsculas que são os átomos. Cada átomo é constituído de um núcleo e da eletrosfera. No núcleo encontram-se os prótons e os nêutrons, e na eletrosfera estão localizados os elétrons.

No núcleo do átomo os prótons possuem carga elétrica positiva e os nêutrons não possuem carga elétrica.

Na eletrosfera que é disposta em camadas ao redor do núcleo, estão os elétrons do átomo que possuem cargas elétricas negativas e, movimentam-se girando em torno do núcleo em órbitas elípticas.


Os elétrons (-) se repelem e os prótons (+) também, havendo atração ente elétrons (-) e prótons (+), ou seja, cargas de sinais contrário se atraem.

Desta forma, o núcleo efetua uma força de atração sobre a eletrosfera mantendo os elétrons orbitando no átomo.


Os materiais possuem números diferentes de prótons, nêutrons e elétrons, e é o que os diferencia uns dos outros.

Exemplo:

- » O carbono possui 6 prótons, 6 nêutrons e 6 elétrons.
- » O oxigênio possui 8 prótons, 8 nêutrons e 8 elétrons.
- » O cobre possui 29 prótons, 34 nêutrons e 29 elétrons.
- » O ouro possui 79 prótons,118 nêutrons e 79 elétrons.

Cada camada da eletrosfera pode possuir um número máximo de elétrons que são:

Camada	Máximo de Elétrons
K	2
L	8
M	18
N	32
О	32
P	18
Q	2

Quanto maior o número de elétrons, maior será o número de camadas e, por consequência, menor será a atração do núcleo em relação às últimas camadas, tornando o material mais instável eletricamente, que é a característica dos materiais considerados bons condutores de eletricidade.

Da mesma forma, quanto menor o número de elétrons, menor será o número de camadas e mais estável eletricamente é o material, sendo as características dos materiais isolantes, que também são chamados de dielétricos.

1.2. CIRCUITO ELÉTRICO

Circuito elétrico é a ligação de elementos elétricos formando um caminho fechado da corrente elétrica.

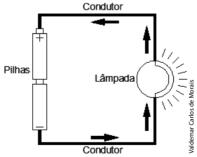
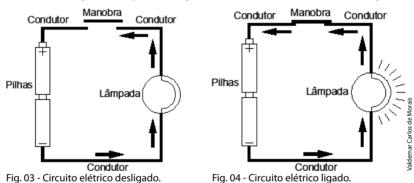


Fig. 02 - Circuito elétrico fechado com a corrente representada no sentido real.

Para a formação de um circuito elétrico são necessários:

- » Uma fonte geradora de eletricidade (pilha, bateria, gerador).
- » Uma carga elétrica (lâmpada, motor).
- » Condutores.


Ao analisar uma lanterna, observa-se que a corrente elétrica sai das pilhas, passando pelos condutores até o filamento da lâmpada e retorna no outro polo das

Na antiguidade, convencionou-se que as correntes elétricas saíam do polo positivo para o negativo o que define-se como sentido convencional da corrente elétrica. Com os estudos sobre o átomo, percebeu-se que o sentido da corrente depende da natureza do condutor, e que, nos condutores sólidos o fluxo das cargas é através dos elétrons livres que são negativos. Portanto, o sentido real da corrente elétrica em condutores sólidos é do polo negativo para o polo positivo.

Na Fig. 02 a lâmpada acenderá e permanecerá acesa até que se queime ou esgote a carga das pilhas.

1.2.1. DISPOSITIVO DE MANOBRA

É o componente instalado nos condutores, que permite ou impede a passagem de corrente da fonte geradora para a carga elétrica, através de manobras (ligar e desligar).

1.3. Grandezas Elétricas

Uma grandeza é tudo aquilo que possa ser comparado quantitativamente através de uma escala predefinida. Exemplo: Quando dizemos que uma pessoa pesa 60 kg e tem 1,70 m de altura, estamos comparando a sua massa com um peso de referência que, no caso, é em quilogramas e estamos comparando a sua altura com uma medida de referência que é o metro.

Em eletricidade, há várias grandezas elétricas que podem ser medidas e comparadas com uma unidade de referência.

1.3.1. CARGA ELÉTRICA

Em um material, pode haver desequilíbrio elétrico, ocasionando o deslocamento de elétrons. Esse fluxo de deslocamento dos elétrons é denominado de carga elétrica e é medido em Coulomb (C).

O Coulomb (C) é a unidade de carga elétrica pelo Sistema Internacional (SI).

O deslocamento de 6.250.000.000.000.000.000 (seis quintilhões e duzentos e cinquenta quatriliões) ou 6.25×10^{18} de elétrons por um condutor é equivalente a circulação de uma corrente elétrica de 1 Coulomb.

Como não é uma unidade muito prática de se medir por ser muito extensa, definiu-se que a carga elétrica é medida em função do tempo, criando-se uma unidade mais prática de medição, o Ampère (A).

Dessa maneira, definiu-se que 1 Coulomb é a quantidade de carga carregada pela corrente de 1 Ampère durante o intervalo de tempo de 1 segundo (1A = 1C/s).

1.3.2. CORRENTE ELÉTRICA (I)

A movimentação ordenada dos elétrons é denominada corrente elétrica. Sua intensidade é medida em **Ampères** (A) em homenagem ao francês André Marie Ampère (1775-1836).

Portanto, a corrente elétrica é uma relação entre o fluxo de cargas elétricas (ΔQ) atravessando transversalmente a superfície do condutor em um intervalo de tempo (Δt).

$$I = \underline{\Delta Q}$$

$$\underline{\Delta t}$$

1.3.3. TENSÃO ELÉTRICA (E)

É a força necessária para que os elétrons circulem de forma ordenada movendo-se de um átomo para o outro. Pode ser definida também como **Força eletro motriz** (f.e.m), **Diferença de potencial** (d.d.p) ou simplesmente **Tensão**.

Sua intensidade é medida em **Volt**(V) em homenagem ao físico italiano Alessandro Volta (1745-1827).

Fazendo uma analogia para entendimento, entre corrente e tensão, podemos tomar como exemplo uma caixa cheia de água. Haverá uma mínima movimentação de água, quase imperceptível.

Ao colocar esta mesma caixa no alto da casa e ligá-la, através de mangueiras, a uma torneira no jardim, estamos criando uma diferença de pressão entre a caixa e a torneira (analogicamente, uma diferença de tensão entre o gerador e a carga).

Analogicamente, ao abrir a torneira, haverá um fluxo muito grande da água fluindo em direção a ela (analogicamente, uma corrente elétrica).

Deste modo, podemos dizer que a tensão elétrica, é a maneira que temos de inicializar e potencializar a corrente elétrica. E, de certa forma, concluir que pode haver tensão sem necessariamente haver corrente (Exemplo: torneira fechada) e não haver corrente sem tensão.

1.3.4. RESISTÊNCIA ELÉTRICA (R)

A capacidade de um material se opor à passagem de corrente é denominada Resistência elétrica. Seu resultado é obtido em **Ohms** (Ω) (George Simon Ohm - Alemão - 1789-1854).

A resistência elétrica está diretamente relacionada a resistividade (ρ) do material e é obtida pela equação:

$$R = \frac{\rho \ell}{S}$$

Onde:

- » **R**: É a resistência elétrica (em ohms, Ω).
- » ρ : É a resistividade elétrica (Ω mm²/m).
- » **l**: É o comprimento (em metros).
- » **S**: É a área da seção (em mm²).

Resistividades de alguns materiais a 20 °C:

- » Prata = 0.016.
- \sim Cobre = 0.0172.
- \sim Ouro = 0,0230.
- » Alumínio = 0,02857.

Exemplo:

a) Calcular a resistência de um fio de cobre com 50 metros e seção 2,5 mm².

A resistividade do cobre é $0.0172 \Omega \text{mm}^2/\text{m}$, então, temos:

$$R = \underbrace{0.0172 \times 50}_{2,5} \to \underbrace{0.86}_{2,5} = 0.34 \Omega$$

b) Calcular a resistência de um fio de cobre com 200 metros e seção 4,0 mm².

$$R = 0.0172 \times 200 \rightarrow 3.44 = 0.86 \Omega$$

c) Calcular a resistência de um fio de alumínio com 500 metros e seção 16 mm².

A resistividade do alumínio é 0,02857 Ωmm²/m, então, temos:

$$R = 0.02857 \times 500 \rightarrow 14.285 = 0.89 \Omega$$

1.3.5. Efeito Joule

O físico inglês Giácomo Presscotti Joule (1818-1889) estudou um fenômeno físico que transforma a energia elétrica em calor sempre que uma corrente elétrica percorre um condutor pela resistência à passagem da corrente. Ele percebeu que quanto maior a corrente, maior é a resistência à sua passagem, aumentando proporcionalmente o calor produzido.

Este fenômeno é utilizado em equipamentos de aquecimento, tais como aquecedores, chuveiro, ferro elétrico, etc, onde a corrente elétrica percorre suas resistências, transformando energia elétrica em energia térmica.

O fenômeno pode também ser facilmente notado nas lâmpadas incandescentes onde a corrente elétrica percorre o filamento interno de tungstênio (metal cujo ponto de ebulição é elevado) esquentando a temperatura de até 2.500 °C, até tornálo incandescente e dessa forma emitindo luz.

Devido a esse fenômeno, todos os equipamentos elétricos em funcionamento produzirão a energia a que são destinados (mecânica, luminosa, etc.), mas devido ao efeito Joule, produzem energia térmica (calor).

1.3.6. CONDUTÂNCIA ELÉTRICA (G)

Todo material condutor de energia possui uma facilidade de conduzir corrente e uma certa resistência ao mesmo tempo.

A facilidade de conduzir corrente é denominada de condutância (G) e é medida em Siemmens.

A condutância é o oposto da resistividade:

$$\sigma = \frac{1}{\rho}$$

Condutâncias dos materiais a 20 °C:

- » Prata = 62,5.
- » Cobre puro = 61,7.
- \sim Ouro = 43,5.
- » Alumínio puro = 34,2.
- » Cobre condutores = 56.
- » Alumínio condutores = 32.

1.3.7. LEI DE OHM

Em 1827, o filósofo alemão George S. Ohm estabeleceu a Lei de Ohm, que indica como se comportam tensões e corrente quando submetidas a uma resistência em um circuito.

A equação é:

$$E = R \times I$$

Onde:

- » E: Tensão ou diferença de potencial (d.d.p) em Volts (V).
- » **R**: Resistência em Ohms (Ω).
- » I: Corrente em Ampères (A).

Da Lei de Ohm, obtemos as outras expressões que são:

$$\begin{bmatrix} R = \underline{E} \\ I \end{bmatrix} e \begin{bmatrix} I = \underline{E} \\ R \end{bmatrix}$$

De acordo com as expressões podemos concluir que:

- » Quanto maior a tensão, maior será a corrente.
- » Quanto maior a resistência, menor será a corrente.

Ou:

A corrente (I) é proporcional à tensão (E) e inversamente proporcional à resistência (R).

Exemplos:

a) Em um circuito, qual será a corrente se a tensão for de 12~V e a resistência de $6~\Omega$?

$$I = \underline{12} = 2A$$

b) Se a resistência for de 12 Ω , a corrente será de?

$$I = \underline{12} = 1A$$

$$12$$

Ou seja, aumenta-se a resistência, diminui-se a corrente.

c) Considerando as mesmas resistências e aumentando a tensão para 24 V qual serão as correntes resultantes?

$$I = 24 = 4A$$
 6
 $I = 24 = 2A$
 12

R: Aumenta a tensão e a corrente proporcionalmente.

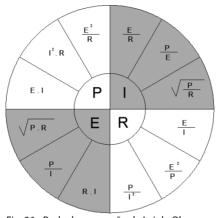


Fig. 06 - Roda de conversão da Lei de Ohm.

1.3.8. POTÊNCIA ELÉTRICA (P)

A capacidade de um equipamento produzir um trabalho utilizando a energia elétrica e transformando-a em outro tipo de energia é denominado de potência elétrica do equipamento.

Para potência temos a equação:

$$P = E \times I$$

Segundo a Lei de Ohm, E = R x I, substituindo a tensão temos:

$$P = (R \times I) \times I$$

Em um resistor onde a corrente é conhecida, a potência é dada pela equação:

$$P = R \times I^2$$

Onde a tensão é conhecida, obtemos a potência pela equação:

$$P = \frac{E^2}{R}$$

Exemplos:

- **a)** Uma lâmpada de 100 Watts é alimentada na tensão de 220 V, ao acendê-la qual será a corrente elétrica?
- » P = 100 W
- E = 220 V
- I = (x) A

Pela equação temos:

$$I = \frac{P}{E} = 100/220 = 0,45 \text{ A}$$

b) Essa mesma lâmpada sendo alimentada na tensão de 110 V, qual será a corrente ao acendê-la?

$$I = 100/110 = 0.91 A$$

c) Ligamos um chuveiro na tensão de 220 V, e obtemos a corrente de 22 A. Qual é a potência do chuveiro?

$$P = 220 \times 22 = 4840 \text{ Watts}$$

d) Qual é a potência de um resistor de $10~\Omega$ ligado em uma tensão de $220~\mathrm{V}$?

$$P = \underline{220}^2 = \underline{48.400} = 4840 \text{ Watts}$$

e) Qual é a potência de um resistor de $10~\Omega$ alimentado por uma corrente de $22~\Lambda$?

$$P = 10 \times 22^2 = 4840 \text{ Watts}$$

Podemos observar que, quanto menor a tensão, maior a corrente.

Resumo das grandezas:

- » E = Tensão elétrica em Volt (V).
- » I = Corrente elétrica em Ampère (A).

» R = Resistência Elétrica em Ohm (Ω) .

$$R = \underline{E}$$
I

» P = Potência elétrica em Watt (W).

$$P = E \times I$$

$$Com E \text{ fixa } \rightarrow P = \frac{E^2}{R}$$

$$Com I \text{ fixa } \rightarrow P = I^2 \times R$$

A potência elétrica de um equipamento, é diretamente relacionada à sua tensão (E) e corrente elétrica (I). Como a tensão é obtida em volts (V) e a corrente em ampères (A), a potência elétrica é obtida em Volt-Ampère (VA), que denominamos de potência aparente.

1.4. Associações

Em algumas instalações, a fim de obtermos uma determinada resistência ou uma determinada potência, temos a necessidade de ligar vários componentes em um mesmo circuito, com intuito de suprirem determinada necessidade.

Exemplo: ligar duas ou mais lâmpadas para iluminar melhor um ambiente.

Essa interligação é denominada de associação de componentes ou associação de cargas.

Para entendermos como se comportam as grandezas elétricas nos componentes individualmente em um circuito, utiliza-se as Leis de Ohm das tensões e das corrente.

Em associações, necessitamos do conhecimento de outras leis que indicam como se comportam as grandezas elétricas em um circuito onde existam vários componentes e como será a ação e o resultado dessa ação após a passagem das tensões e correntes por esses componentes.

1.4.1. LEIS DE KIRCHHOFF

Formuladas em 1845, as Leis de Kirchhoff (em homenagem ao físico alemão Gustav Kirchhoff (1824-1887), baseiam-se nas leis de conservação de carga e da energia existentes no circuito, estabelecendo o comportamento de tensões e correntes nos diversos elementos de um circuito.